

Nano Structure Urea Grease: Performance and Application

Akihiro SHISHIKURA and Hideki NAKATA IDEMITSU KOSAN CO., LTD., JAPAN

5/22/2018 at Minneapolis, U.S.A.

Contents

- 1. Introduction
- 2. Nano Structure Urea Grease
 - 1) Structure 2) Performance
- 3. Application for Robot's Speed Reducer
- 4. Conclusion

1. Introduction

1. Introduction

High Performance Grease = Li Complex Grease and Urea Grease

Urea 5.9

	Li Complex 19.7	L	i Soap 54.5		Others (Ca, Na) 19.9	
0	20	40	60	80	0 10	00 [%]

Characteristics of Greases (by thickener)

Characteristics	Li Soap	Li Complex	Urea
Heat-Resistance Oxidation	×	\bigtriangleup	0
Lubricity	Δ	0	0
Noise	0	Δ	×→O
Price	0	\triangle	×→O

Miniaturize grease structure by using a novel production process

2. Nano Structure Urea Grease (INS-UG)

Process	New (Continuous)	Conventional (Batch)	
Reaction	Amine Solution Isocyanate Solution	Amine Solution	
	Miniaturize thickener in	Fiberize the thickener in	
	ultra-high shear field	stirring mixing field	
Finishing	Line Mixing	Batch Mixing	
Milling No Need		Necessary	

Conventional Process

Heterogeneous Morphology

New Process (INS-UG)

Fine "Nano-bundles" are dispersed homogeneously.

Particle Size Distribution (Light Scattering Analysis)

2. Nano Structure Urea Grease (INS-UG)

1. Acoustic Characteristics (BeQuiet+)

2. Fretting Wear Property (ASTM D 4170)

2. Fretting Wear Property (ASTM D 4170)

Smaller particle diameter $\rightarrow \rightarrow \rightarrow \rightarrow$ Lower fretting wear

3. Low Temperature Characteristic (Yield Stress)

4. Performance of INS-UG

Chara	INS-UG	Conventional	Evaluation	
Noise Be Quiet [-]		GN4	GN1	Ø
Anti-Weld	FALEX [N]	1050	700	Ø
Fretting Wear ASTM D 4170 [mg]		4	37	Ø
Durability	ASTM D 3336 [h]	2256	1181	Ø
Low Temp. Property	Yield Stress @-20°C [Pa]	2500	5500	Ø
Heat Resistance	Dropping Point [°C]	260<	260<	0
Rust Prevention	Bearing Rust Prevention [-]	Pass	Pass	0
Water Resistance	ASTM D1264 [wt%]	0.1	0	0
Shear Stability	Roll Stability @80°C, 20h [-]	46	55	0
SHELL EP	ASTM D2783 WL [N]	1236	1236	0
SHELL Wear	ASTM D2783 [mm]	0.48	0.53	0

5. Estimated Mechanism of INS-UG

Performances	Characteristics of INS-UG			
Low Noise	Stirring Resistance	Small		
Anti-Weld	Fracture Resistance	Small	[Mechanism]	
Abrasion Resistance	Base Oil Tranport	Lot	2 Additive Film Formation	
Durability	Additive Transport	Lot	3 Urea Film Formation	
Low Temp. Property	Thickener Transport	Lot		
Heat Resistance	Same as Conventional UG			
Rust Prevention				
Water Resistance				
Shear Stability				

6. Application Area of INS-UG

- ♦ Automobile (e-Mobility)
- Construction Machine
- ♦ Agricultural Machine
- ♦ Forestry Machine
- ♦ Wind Turbine
- Hot Metal Working Machine
- Electric appliances (Motor)
- Robot (Gear)
- Bearings

3. Application of INS-UG For Robot's Speed Reducer

Speed Reducers for Robots

Planetary Differential Gear (RV Gear)

Ball Bearing, Needle Bearing, Taper Roller Bearing, Spar Gear, Pin Gear

Strain Wave Generator (Harmonic Drive)

Ball Bearing (Wave Generator), Cross Roller Bearing, Flexspline, Circular Spline

Inscribed Planetary Gear (Cyclo Gear)

Ball Bearing, Needle Bearing, Pin Gear

3. Application for Robot

Durability Test Equipment of Robot's Speed Reducer

3. Application for Robot

3. Application for Robot

Nano Structure → Low Power Loss → Low Heat Generation → Long Running Time

5. Conclusion

Nano structure urea grease (INS-UG) was produced by a special designed ultra-high shear reactor.

The particle (fiber) size of urea thickener was under submicron size.

Ultra low noise (BeQuiet+ test)

Low fretting wear (ASTM D 4170)

[Application: robot's speed reducer] High power transmission efficiency Low heat generation Long running time

Thank you!!!

Composition					
Thickener	Alicyclic + Aliphatic Urea (10wt%)				
Base oil	PAO (50mm ² /s)				
Additives	Antioxidant Antirust agent				
Properties					
	Conventional Process	New Process (INS)			
Worked penetration (25°C, 60W)	265	272			
Dropping point (°C)	260<	260<			
Oil separation (wt%)	0.1	0.2			
Oxidative stability (kPa)	25	25			
Water resistance (wt%)	0.1	0.1			
Shell EP WL (N)	1236	1236			

SKF BeQuiet+

BeQuiet method

Automatic grease feed Peak noise \rightarrow "GN class" determined

Bearing 608/QE4

The classification of grease noise is set in GN classes in the following way:

GN0: > anything worse than GN1 $GN1: > 95 \text{ percent of all peaks are} = 40 \ \mu\text{m/s}$ $GN2: > 95 \text{ percent of all peaks are} = 20 \ \mu\text{m/s}$ $GN3: > 95 \text{ percent of all peaks are} = 10 \ \mu\text{m/s}$ $> 98 \text{ percent of all peaks are} = 20 \ \mu\text{m/s}$ $100 \text{ percent of all peaks are} = 40 \ \mu\text{m/s}$ $GN4: > 95 \text{ percent of all peaks are} = 5 \ \mu\text{m/s}$ $> 98 \text{ percent of all peaks are} = 20 \ \mu\text{m/s}$ INS-UG $GN5: > 95 \text{ percent of all peaks are} = 20 \ \mu\text{m/s}$ $SON5: > 95 \text{ percent of all peaks are} = 20 \ \mu\text{m/s}$

100 percent of all peaks are =10 μ m/s

Light Scattering

I(q) :Scattering intensity q : Scattering vector

HORIBA Particle Size Distribution Analyzer LA-950A Wave length : 650 nm, 405 nm Detector : silicon photo diode Theory : Mie scattering Size range : 10 nm~3000 µm

